# Read in data
myData = read.delim(file = "http://www.kktg.net/R/Chapter12Data.txt",
colClasses = c("character", "numeric", "numeric", "numeric"), header = T)
# Create categorical versions of the dem/polity data
myData$dem =
ifelse(myData$P4 > 7, 1, 0) # Dem if Polity >7
myData$corrupt =
ifelse(myData$CPI < 4, 1, 0) # Corrupt if CPI<4
myData$cGDPk = myData$cGDP/1000 # Per capita GDP in 1000s
# Remove all observations with missing data
myData = myData[!is.na(myData$CPI) & !is.na(myData$P4),]
CPIbreaks = cut(myData$CPI,
breaks = 5) # Create factor with P4 in 5 bins
newCPI = tapply(myData$CPI, # Create vector of bar heights
CPIbreaks, # based on the bins we created
length) # count number of obs in each bin
png(filename = "illustrations/fig-12-13-barplot2.png",
units = "in", # Set measurements in inches
res = 1200, # Set resolution at 1200dpi
width = 6, # Width at 6 inches
height = 4) # Height at 4 inches
par(mai = c(.5, 1, .25, .25)) # Change margins for png graphs
barplot(newCPI, # Create a barplot
horiz = T, # Rotate to horizontal
ylab = "CPI Corruption Score") # Add y-axis label
dev.off() # Output png file
Figure 12-13: A Horizontal Barplot
Portfolio Categories: All Graphics and SGR Book Graphics.